
Eric Benhamou eric.benhamou@dauphine.eu

Remy Belmonte remy.belmonte@dauphine.eu

Masterclass 4

Algorithmic and advanced

Programming in Python

Algorithmic and advanced Programming in Python

Outline

1. Hashing concept

2. Hashtable

3. Load factor and collisions

2

Algorithmic and advanced Programming in Python

Reminder of the objective of this course

• People often learn about data structures out of context

• But in this course you will learn foundational concepts by building a
real application with python and Flask

• To learn the ins and outs of the essential data structure, experiencing in
practice has proved to be a much more powerful way to learn data
structures

3

Algorithmic and advanced Programming in Python

Reminder of previous session

• In Master class 3, we discuss about practical issue concerning Flask,
data structure

• Question: can you summarize what Flask is and how it works?

4

Algorithmic and advanced Programming in Python

What is hashing?

• Hashing is a technique used for storing and retrieving information as
quickly as possible and is useful in implementing tables.

• Question: can you cite some mainstream application or usage of
hashing?

• Why hashing?

• In the tree class, we saw that balanced binary search trees support
operation like insert, delete and search in O(logn) time. Sometimes, if
you need these operations in O(1), then hashing is a way. Remember
that for hashing, worst case complexity is O(n) but in average O(1).

5

Algorithmic and advanced Programming in Python

HashTable operations

• The common operations for hash table are

• Create Hash Table

• Hash Search

• Hash Insert

• Hash Delete

• Delete Hash Table

6

Algorithmic and advanced Programming in Python

Intuition of hashing - 1

• In simple terms we can treat 𝑎𝑟𝑟𝑎𝑦 as a hash table. For understanding
the use of hash tables, let us consider the following example: Give an
algorithm for printing the first repeated character if there are
duplicated elements in it. Let us think about the possible solutions.

• The simple and brute force way of solving is: given a string, for each
character check whether that character is repeated or not. The time
complexity of this approach is O(𝑛 2)

• Question: can you think of a better solution?

7

Algorithmic and advanced Programming in Python

Intuition of hashing - 2

• Now, let us find a better solution for this problem. Since our objective is to
find the first repeated character, what if we remember the previous
characters in some array?

• We know that the number of possible characters is 256 (for simplicity
assume 𝐴𝑆𝐶𝐼𝐼 characters only).

• Create an array of size 256 and initialize it with all zeros.

• For each of the input characters go to the corresponding position and
increment its count.

• Since we are using arrays, it takes constant time for reaching any location.

• While scanning the input, if we get a character whose counter is already 1
then we can say that the character is the one which is repeating for the first
time.

8

Algorithmic and advanced Programming in Python

Intuition of hashing - 3

• In python terms:

• Application:

9

Question: what would you get?

Algorithmic and advanced Programming in Python

Result

10

• You would get:

• Hence you should remove at least space as follows:

Algorithmic and advanced Programming in Python

Going further, array is not such a good idea?

• Question: any idea why?

11

Algorithmic and advanced Programming in Python

Why not arrays?

• Arrays can be seen as a mapping, associating with every integer in a
given interval some data item.

• It is finitary, because its domain, and therefore also its range, is finite.
There are many situations when we want to index elements differently
than just by integers.

• Common examples are strings (for dictionaries, phone books, menus,
data base records), or structs (for dates, or names together with other
identifying information).

12

Algorithmic and advanced Programming in Python

Arrays work well for define and finite keys

• In many applications requiring associative arrays, we are storing complex
data values and want to access them by a key which is derived from the
data. A typical example of keys are strings, which are appropriate for many
scenarios.

• For example, the key might be a student id and the data entry might be a
collection of grades, perhaps another associative array where the key is the
name of assignment or exam and the data is a score. We make the
assumption that keys are unique in the sense that in an associative array
there is at most one data item associated with a given key. In some
applications we may need to complicate the structure of keys to achieve this
uniqueness. This is consistent with ordinary arrays, which have a unique
value for every valid index.

• But keys may not be that simple!

13

Algorithmic and advanced Programming in Python

What is the universe is too large?

• In the previous problem, we have used an array of size 256 because we
know the number of different possible characters [256] in advance.

• Now, let us consider a slight variant of the same problem. Suppose the
given array has numbers instead of characters, then how do we solve
the problem?

• In this case the set of possible values is infinity (or at least very big).
Creating a huge array and storing the counters is not possible. That
means there are a set of universal keys and limited locations in the
main memory. To solve this problem we need to somehow map all
these possible keys to the possible memory locations.

14

Algorithmic and advanced Programming in Python

For numbers this is not feasilbe

• From the above discussion and diagram below it can be seen that we
need a mapping of possible keys to one of the available locations. As a
result, using simple arrays is not the correct choice for solving the
problems where the possible keys are very big. The process of
mapping the keys to available main memory locations is called

ℎ𝑎𝑠ℎ𝑖𝑛𝑔.

15

Algorithmic and advanced Programming in Python

Components of Hashing

• Hashing has four key components:

• Hash Table

• Hash Functions

• Collisions

• Collision Resolution Techniques

16

Algorithmic and advanced Programming in Python

Hash Table

• Hash table is a generalization of array. With an array, we store the
element whose key is 𝑘 at a position 𝑘 of the array. That means, given
a key 𝑘, we find the element whose key is 𝑘 by just looking in the 𝑘th

position of the array. This is called 𝑑𝑖𝑟𝑒𝑐𝑡 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑖𝑛𝑔.

• Direct addressing is applicable when we can afford to allocate an array
with one position for every possible key. But if we do not have enough
space to allocate a location for each possible key, then we need a
mechanism to handle this case. Another way of defining the scenario
is: if we have less locations and more possible keys, then simple array
implementation is not enough.

17

Algorithmic and advanced Programming in Python

Hash function

• In these cases one option is to use hash tables. Hash table or hash map
is a data structure that stores the keys and their associated values, and
hash table uses a hash function to map keys to their associated values.
The general convention is that we use a hash table when the number of
keys actually stored is small relative to the number of possible keys.

• A hash table is a collection of items which are stored in such a way as
to make it easy to find them later. Each position of the hash table,
often called a 𝑠𝑙𝑜𝑡 (or a 𝑏𝑢𝑐𝑘𝑒𝑡), can hold an item and is named by an
integer value starting at 0.

18

Algorithmic and advanced Programming in Python

Slots

• For example, we will have a slot named 0, a slot named 1, a slot
named 2, and so on. Initially, the hash table contains no items so every
slot is empty. We can implement a hash table by using a list with each
element initialized to the special NULL.

19

Algorithmic and advanced Programming in Python

Hashing

20

Algorithmic and advanced Programming in Python

Hash function

• The first idea behind hash tables is to exploit the efficiency of arrays. So: to
map a key to an entry, we first map a key to an integer and then use the
integer to index an array A. The first map is called a ℎ𝑎𝑠ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. The
hash function is used to transform the key into the slot index (or bucket
index). Ideally, the hash function should map each possible key to a unique
slot index, but it is difficult to achieve in practice.

• Given a collection of elements, a hash function that maps each item into a
unique slot is referred to as a 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 ℎ𝑎𝑠ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. If we know the
elements and the collection will never change, then it is possible to
construct a perfect hash function. Unfortunately, given an arbitrary
collection of elements, there is no systematic way to construct a perfect
hash function. Luckily, we do not need the hash function to be perfect to
still gain performance efficiency.

21

Algorithmic and advanced Programming in Python

Hash function

• One way to always have a perfect hash function is to increase the size
of the hash table so that each possible value in the element range can
be accommodated. This guarantees that each element will have a
unique slot. Although this is practical for small numbers of elements, it
is not feasible when the number of possible elements is large. For
example, if the elements were nine-digit Social Security numbers, this
method would require almost one billion slots. If we only want to store
data for a class of 25 students, we will be wasting an enormous
amount of memory.

• Our goal is to create a hash function that minimizes the number of
collisions, is easy to compute, and evenly distributes the elements in
the hash table. There are a number of common ways to extend the
simple remainder method. We will consider a few of them here.

22

Algorithmic and advanced Programming in Python

Folding method

• The 𝑓𝑜𝑙𝑑𝑖𝑛𝑔 𝑚𝑒𝑡ℎ𝑜𝑑 for constructing hash functions begins by
dividing the elements into equal-size pieces (the last piece may not be
of equal size). These pieces are then added together to give the
resulting hash value. For example, if our element was the phone
number 436-555-4601, we would take the digits and divide them into
groups of 2 (43,65,55,46,01). After the addition, 43+65+55+46+01,
we get 210. If we assume our hash table has 11 slots, then we need to
perform the extra step of dividing by 11 and keeping the remainder. In
this case 210 % 11 is 1, so the phone number 436-555-4601 hashes to
slot 1. Some folding methods go one step further and reverse every
other piece before the addition. For the above example, we get
43+56+55+64+01=219 which gives 219 % 11=10.

23

Algorithmic and advanced Programming in Python

How to Choose Hash Function?

• The basic problems associated with the creation of hash tables are:

• An efficient hash function should be designed so that it distributes the index
values of inserted objects uniformly across the table.

• An efficient collision resolution algorithm should be designed so that it
computes an alternative index for a key whose hash index corresponds to a
location previously inserted in the hash table.

• We must choose a hash function which can be calculated quickly, returns
values within the range of locations in our table, and minimizes collisions.

24

Question: according to you, what would be a good hash function?

Algorithmic and advanced Programming in Python

Characteristics of Good Hash Functions

• A good hash function should have the following characteristics:

• Minimize collisions

• Be easy and quick to compute

• Distribute key values evenly in the hash table

• Use all the information provided in the key

• Have a high load factor for a given set of keys

25

Algorithmic and advanced Programming in Python

Load factor

• The load factor of a non-empty hash table is the number of items
stored in the table divided by the size of the table. This is the decision
parameter used when we want to rehash 𝑜𝑟 expand the existing hash
table entries. This also helps us in determining the efficiency of the
hashing function. That means, it tells whether the hash function is
distributing the keys uniformly or not.

26

Algorithmic and advanced Programming in Python

Collisions and resolutions

• Hash functions are used to map each key to a different address space,
but practically it is not possible to create such a hash function and the
problem is called 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛. Collision is the condition where two keys
are hashed to the same slot.

• Fortunately, there are effective techniques for resolving the conflict
created by collisions. The process of finding an alternate location for a
key in the case of a collision is called 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. Even
though hash tables have collision problems, they are more efficient in
many cases compared to all other data structures, like search trees.
There are a number of collision resolution techniques, and the most
popular are direct chaining and open addressing.

27

Algorithmic and advanced Programming in Python

Direct chaining and open adressing

• Direct Chaining (or Closed Addressing): An array of linked list
application:

• Separate chaining (linear chaining)

• Open Addressing: Array-based implementation:

• Linear probing (linear search)

• Quadratic probing (nonlinear search)

• Double hashing (use multiple hash functions)

• Of course, the ideal solution would be to avoid collisions altogether.
We might try to achieve this goal by choosing a suitable hash function.

28

Algorithmic and advanced Programming in Python

Separate chaining

• A first idea to explore is to implement the associative array as a linked list,
called a chain or a linked list. Separate chaining is one of the most
commonly used collision resolution techniques. It is usually implemented
using linked lists.

• Collision resolution by chaining combines linked representation with hash
table. When two or more elements hash to the same location, these elements
are constituted into a singly-linked list called a 𝑐ℎ𝑎𝑖𝑛.

• In chaining, we put all the elements that hash to the same slot in a linked
list. If we have a key k and look for it in the linked list, we just traverse it,
compute the intrinsic key for each data entry, and compare it with k.

• If they are equal, we have found our entry, if not we continue the search.

• If we reach the end of the chain and do not find an entry with key k, then
no entry with the given key exists.

29

Algorithmic and advanced Programming in Python

Separate chaining example

• In separate chaining, each slot of the hash table is a linked list. To
store an element in the hash table you must insert it into a specific
linked list. If there is any collision (i.e. two different elements have
same hash value) then store both the elements in the same linked list.

• As an example, consider the following simple hash function:

(𝑘𝑒𝑦) = 𝑘𝑒𝑦 % 𝑡𝑎𝑏𝑙𝑒 𝑠𝑖𝑧𝑒

30

Algorithmic and advanced Programming in Python

Algo in details

1. In a hash table with size 7,
keys 27 and 130 would get
6 and 4 as hash indices
respectively (as 27%7 = 6
and 130%7=4).

31

2. If we insert a new element (18,
“Saleem”), that would also go to the
fourth index as 18%7 is 4.

Algorithmic and advanced Programming in Python

Hashing cost

• The cost of a lookup is that of scanning the entries of the selected
linked list for the required key. If the distribution of the keys is
sufficiently uniform, then the average cost of a lookup depends only
on the average number of keys per linked list.

• For this reason, chained hash tables remain effective even when the
number of table entries (𝑛) is much higher than the number of slots.

• For separate chaining, the worst-case scenario is when all the entries
are inserted into the same linked list.

• The lookup procedure may have to scan all its entries, so the worst-
case cost is proportional to the number (𝑛) of entries in the table.

32

Algorithmic and advanced Programming in Python

Worst case behavior

• The worst-case behavior of hashing with chaining is terrible: all 𝑛
keys hash to the same slot, creating a list of length 𝑛. The worst-case
time for searching is thus)(𝑛) plus the time to compute the hash
function--no better than if we used one linked list for all the elements.
Clearly, hash tables are not used for their worst-case performance.

33

Algorithmic and advanced Programming in Python

Open addressing

• In open addressing all keys are stored in the hash table itself. This
approach is also known as 𝑐𝑙𝑜𝑠𝑒𝑑 ℎ𝑎𝑠ℎ𝑖𝑛𝑔. This procedure is based
on probing. A collision is resolved by probing.

Linear Probing

• The interval between probes is fixed at 1. In linear probing, we search
the hash table sequentially. starting from the original hash location. If
a location is occupied, we check the next location. We wrap around
from the last table location to the first table location if necessary. The
function for rehashing is the following:

𝑟𝑒ℎ𝑎𝑠ℎ(𝑘𝑒𝑦) = (old_hash + 1)% 𝑡𝑎𝑏𝑙𝑒 𝑠𝑖𝑧𝑒

34

Algorithmic and advanced Programming in Python

Clustering

• One of the problems with linear probing is that table items tend to cluster
together in the hash table. This means that the table contains groups of
consecutively occupied locations that are called 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔.

• Clusters can get close to one another, and merge into a larger cluster. Thus,
the one part of the table might be quite dense, even though another part has
relatively few items. Clustering causes long probe searches and therefore
decreases the overall efficiency.

• The next location to be probed is determined by the step-size, where other
step-sizes (more than one) are possible. The step-size should be relatively
prime to the table size, i.e. their greatest common divisor should be equal to
1. If we choose the table size to be a prime number, then any step-size is
relatively prime to the table size. Clustering cannot be avoided by larger
step-sizes.

35

Algorithmic and advanced Programming in Python

Quadratic probing

• The interval between probes increases proportionally to the hash value
(the interval thus increasing linearly, and the indices are described by a
quadratic function). The problem of clustering can be eliminated if we
use the quadratic probing method. Quadratic probing is also referred to
as 𝑚𝑖𝑑 − 𝑠𝑞𝑢𝑎𝑟𝑒 method.

• In quadratic probing, we start from the original hash location 𝑖. If a
location is occupied, we check the locations 𝑖 + 12 , 𝑖 + 22, 𝑖 + 32, 𝑖 +
42... We wrap around from the last table location to the first table
location if necessary. The function for rehashing is the following:

𝑟𝑒ℎ𝑎𝑠ℎ(𝑘𝑒𝑦) = (old_hash + 𝑘2) % 𝑡𝑎𝑏𝑙𝑒 𝑠𝑖𝑧𝑒

36

Algorithmic and advanced Programming in Python

Example

• 𝐸𝑥𝑎𝑚𝑝𝑙𝑒: Let us assume that the table size is 11 (0. .10)

Hash Function: h(key) = key mod 11

31 𝑚𝑜𝑑 11 = 9

19 𝑚𝑜𝑑 11 = 8

2 𝑚𝑜𝑑 11 = 2

13 𝑚𝑜𝑑 11 = 2 → 2 + 12 = 3

25 𝑚𝑜𝑑 11 = 3 → 3 + 12 = 4

24 𝑚𝑜𝑑 11 = 2 → 2 + 12, 2 + 22 = 6

21 𝑚𝑜𝑑 11 = 10

9 𝑚𝑜𝑑 11 = 9 → 9 + 12, 9 + 22 𝑚𝑜𝑑 11, 9 + 32 𝑚𝑜𝑑 11 = 7

Question: could we do something better?

37

Algorithmic and advanced Programming in Python

Inutition

• Even though clustering is avoided by quadratic probing, still there are
chances of clustering. Clustering is caused by multiple search keys
mapped to the same hash key. Thus, the probing sequence for such
search keys is prolonged by repeated conflicts along the probing
sequence. Both linear and quadratic probing use a probing sequence
that is independent of the search key.

38

Algorithmic and advanced Programming in Python

Double hashing

• The interval between probes is computed by another hash function.
Double hashing reduces clustering in a better way. The increments for
the probing sequence are computed by using a second hash function.
The second hash function ℎ2 should be:

ℎ2(𝑘𝑒𝑦) ≠ 0 and ℎ2 ≠ ℎ1

• We first probe the location ℎ1(𝑘𝑒𝑦). If the location is occupied, we
probe the location ℎ1(𝑘𝑒𝑦) + ℎ2(𝑘𝑒𝑦), ℎ1(𝑘𝑒𝑦) + 2 ∗ ℎ2(𝑘𝑒𝑦), ...

39

Algorithmic and advanced Programming in Python

Example

• Table size is 11 (0. .10) Hash Function: assume ℎ1(𝑘𝑒𝑦) = 𝑘𝑒𝑦 𝑚𝑜𝑑
11 and ℎ2(𝑘𝑒𝑦) = 7 – (𝑘𝑒𝑦 𝑚𝑜𝑑 7)

𝐼𝑛𝑠𝑒𝑟𝑡 𝑘𝑒𝑦𝑠:

58 𝑚𝑜𝑑 11 = 3

14 𝑚𝑜𝑑 11 = 3 → 3 + 7 = 10

91 𝑚𝑜𝑑 11 = 3 → 3 + 7, 3 + 2 ∗ 7 𝑚𝑜𝑑 11 = 6

25 𝑚𝑜𝑑 11 = 3 → 3 + 3, 3 + 2 ∗ 3 = 9

40

Algorithmic and advanced Programming in Python

Comparison of Collision Resolution Techniques

• Comparisons: Linear Probing vs. Double Hashing

The choice between linear probing and double hashing depends on the cost of
computing the hash function and on the load factor [number of elements per
slot] of the table. Both use few probes but double hashing take more time
because it hashes to compare two hash functions for long keys.

• Comparisons: Open Addressing vs. Separate Chaining

It is somewhat complicated because we have to account for the memory
usage. Separate chaining uses extra memory for links. Open addressing needs
extra memory implicitly within the table to terminate the probe sequence.
Open-addressed hash tables cannot be used if the data does not have unique
keys. An alternative is to use separate chained hash tables.

41

Algorithmic and advanced Programming in Python

More generally

• Comparisons: Open Addressing methods

42

Question: Now that you have seen in details hashing,
do you have an idea of complexity?

Algorithmic and advanced Programming in Python

• We stated earlier that in the best case hashing would provide a O(1),
constant time search technique. However, due to collisions, the number of
comparisons is typically not so simple. Even though a complete analysis of
hashing is beyond the scope of this course, we can state some well-known
results that approximate the number of comparisons necessary to search for
an item. From the previous discussion, one doubts how hashing gets O(1) if
multiple elements map to the same location.

• The answer to this problem is simple. By using the load factor we make
sure that each block (for example, linked list in separate chaining approach)
on the average stores the maximum number of elements less than the 𝑙𝑜𝑎𝑑
𝑓𝑎𝑐𝑡𝑜𝑟. Also, in practice this load factor is a constant (generally, 10 or 20).
As a result, searching in 20 elements or 10 elements becomes constant.

43

How Hashing Gets O(1) Complexity

Algorithmic and advanced Programming in Python

Complexity intuition

• If the average number of elements in a block is greater than the load
factor, we rehash the elements with a bigger hash table size. One thing
we should remember is that we consider average occupancy (total
number of elements in the hash table divided by table size) when
deciding the rehash.

• The access time of the table depends on the load factor which in turn
depends on the hash function. This is because hash function distributes
the elements to the hash table. For this reason, we say hash table gives
O(1) complexity on average. Also, we generally use hash tables in
cases where searches are more than insertion and deletion operations.

44

Algorithmic and advanced Programming in Python

Hashing Techniques
• There are two types of hashing techniques:

• static hashing
• and dynamic hashing

• Static Hashing

If the data is fixed then static hashing is useful. In static hashing, the set of keys is
kept fixed and given in advance, and the number of primary pages in the directory
are kept fixed.

• Dynamic Hashing

If the data is not fixed, static hashing can give bad performance, in which case
dynamic hashing is the alternative, in which case the set of keys can change
dynamically.

Question: Can you imagine problems that are not suitable for hash tables?

45

Algorithmic and advanced Programming in Python

Problems for which Hash Tables are not suitable

• Problems for which data ordering is required

• Problems having multidimensional data

• Prefix searching, especially if the keys are long and of variable-lengths

• Problems that have dynamic data

• Problems in which the data does not have unique keys.

46

Algorithmic and advanced Programming in Python

Bloom filters

• A Bloom filter is a probabilistic data structure which was designed to
check whether an element is present in a set with memory and time
efficiency. It tells us that the element either definitely is 𝑛𝑜𝑡 in the set
or may be in the set. The base data structure of a Bloom filter is a 𝐵𝑖𝑡
𝑉𝑒𝑐𝑡𝑜𝑟. The algorithm was invented in 1970 by Burton Bloom and it
relies on the use of a number of different hash functions.

47

Algorithmic and advanced Programming in Python

How it works?

• A Bloom filter starts off with a bit array initialized to zero. To store a data
value, we simply apply 𝑘 different hash functions and treat the resulting 𝑘
values as indices in the array, and we set each of the 𝑘 array elements to 1.
We repeat this for every element that we encounter.

• Now suppose an element turns up and we want to know if we have seen it
before. What we do is apply the 𝑘 hash functions and look up the indicated
array elements. If any of them are 0 we can be 100% sure that we have
never encountered the element before - if we had, the bit would have been
set to 1.

• However, even if all of them are one, we still can't conclude that we have
seen the element before because all of the bits could have been set by the 𝑘
hash functions applied to multiple other elements.

• All we can conclude is that it is likely that we have encountered the element
before.

48

Algorithmic and advanced Programming in Python

In summary

49

https://llimllib.github.io/bloomfilter-tutorial/

• Initial bloom filter

https://llimllib.github.io/bloomfilter-tutorial/

Algorithmic and advanced Programming in Python

We enter hello world

50

Algorithmic and advanced Programming in Python

We compare

51

Algorithmic and advanced Programming in Python

Bloom filter continued

• Note that it is not possible to remove an element from a Bloom filter. The
reason is simply that we can't unset a bit that appears to belong to an
element because it might also be set by another element.

• If the bit array is mostly empty, i.e., set to zero, and the 𝑘 hash functions are
independent of one another, then the probability of a false positive (i.e.,
concluding that we have seen a data item when we actually haven't) is low.
For example, if there are only 𝑘 bits set, we can conclude that the
probability of a false positive is very close to zero as the only possibility of
error is that we entered a data item that produced the same 𝑘 hash values -
which is unlikely as long as the ‘has’ functions are independent.

• As the bit array fills up, the probability of a false positive slowly increases.
Of course when the bit array is full, every element queried is identified as
having been seen before. So clearly we can trade space for accuracy as well
as for time.

52

Algorithmic and advanced Programming in Python

Removal

• One-time removal of an element from a Bloom filter can be simulated
by having a second Bloom filter that contains elements that have been
removed. However, false positives in the second filter become false
negatives in the composite filter, which may be undesirable. In this
approach, re-adding a previously removed item is not possible, as one
would have to remove it from the 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 filter.

53

Algorithmic and advanced Programming in Python

Selecting hash functions

• The requirement of designing 𝑘 different independent hash functions
can be prohibitive for large 𝑘. For a good hash function with a wide
output, there should be little if any correlation between different bit-
fields of such a hash, so this type of hash can be used to generate
multiple 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 hash functions by slicing its output into multiple
bit fields.

• Alternatively, one can pass 𝑘 different initial values (such as 0, 1, ..., 𝑘
- 1) to a hash function that takes an initial value – or add (or append)
these values to the key. For larger 𝑚 and/or 𝑘, independence among
the hash functions can be relaxed with negligible increase in the false
positive rate.

54

Algorithmic and advanced Programming in Python

Selecting size of bit vector

• A Bloom filter with 1% error and an optimal value of k, in contrast,
requires only about 9.6 bits per element — regardless of the size of the
elements. This advantage comes partly from its compactness, inherited
from arrays, and partly from its probabilistic nature. The 1% false-
positive rate can be reduced by a factor of ten by adding only about
4.8 bits per element.

55

Algorithmic and advanced Programming in Python

Space advantages

• While risking false positives, Bloom filters have a strong space
advantage over other data structures for representing sets, such as self-
balancing binary search trees, tries, hash tables, or simple arrays or
linked lists of the entries. Most of these require storing at least the data
items themselves, which can require anywhere from a small number of
bits, for small integers, to an arbitrary number of bits, such as for
strings (tries are an exception, since they can share storage between
elements with equal prefixes). Linked structures incur an additional
linear space overhead for pointers.

• However, if the number of potential values is small and many of them
can be in the set, the Bloom filter is easily surpassed by the
deterministic bit array, which requires only one bit for each potential
element.

56

Algorithmic and advanced Programming in Python

Time advantages

• Bloom filters also have the unusual property that the time needed
either to add items or to check whether an item is in the set is a fixed
constant, O(𝑘), completely independent of the number of items already
in the set. No other constant-space set data structure has this property,
but the average access time of sparse hash tables can make them faster
in practice than some Bloom filters. In a hardware implementation,
however, the Bloom filter shines because its k lookups are independent
and can be parallelized.

57

Algorithmic and advanced Programming in Python

In Lab session

• You will play with the concepts and starts getting more and more
familiar with hashing, hash table and bloom filter

• This can be useful for your project

• Lab is done by Remy Belmonte

58

